FREE RADICAL SUBSTITUTION REACTIONS OF

PHENYLACETYLENE DERIVATIVES BY AN ADDITION-ELIMINATION MECHANISM¹

GLEN A. RUSSELL* and PREECHA NGOVIWATCHAI

Department of Chemistry Iowa State University Ames, Iowa 50011

Summary: Phenylacetylenes (PhC=CQ with Q = PhSO₂, I, SPh, Bu₃Sn PhC=CHg) undergo free radical chain substitution reactions with RHgCl, R₂Hg, $(EtO)_2P(0)HgCl$, (PhS)₂Hg or (PhSO₂)₂Hg. The relative reactivities of PhC=CQ towards $\underline{c}-c_6H_{11}^{\circ}$ are Q = PhSO₂ (65) > I (19) > Bu₃Sn (1.0).

Several recent reports of free radical reactions of $PhC_{\equiv}CSO_2Ph$ have appeared.^{2,3} These complement an earlier report by Nozaki et al. that $PhC_{\equiv}CSO_2Me$ or $PhC_{\equiv}CSOMe$ react with alkylboranes by a radical process to form $PhC_{\equiv}CR$.⁴ We have demonstrated that a variety of substituted alkenes including PhCH=CHQ and $Ph_2C=CHQ$ with Q = HgCl, Bu₃Sn, SO₂Ph, SOPh, I or SPh react with alkylmercury halides by a free radical chain process to form PhCH=CHR or $Ph_2C=CHR$.^{5,6} It appears that the mechanism suggested for these vinyl systems (Scheme 1) is also applicable to acetylenic systems.⁷

Scheme 1

PhCH=CHQ + R•> PhĊHCH(R)(Q)	(1)
PhĊHCH(R)(Q)> PhCH=CHR + Q•	(2)
Q• + RHgC1> QHgC1 + R•	(3)
Bu ₃ Sn• + RHgCl ───→ Bu ₃ SnCl + Hg° + R•	(3a)
HgC1• + RHgC1> HgC1₂ + Hg° + R•	(3b)

In specific cases the combination of Reactions 1 and 2 can lead to stereospecific substitution with retention of configuration.⁶ Evidence for Reactions 3-3b occurring in a concerted one-step process is furnished by the observations that in the reactions of PhCH=CHSO₂Ph, PhCH=CHHgC1 or PhCH=CHSnBu₃ with excesses of 1:1 mixtures of two alkylmercury chlorides, the relative reactivities of the alkylmercury chlorides as determined from product

ratios are \underline{t} -Bu > \underline{c} -C₆H₁₁ > \underline{n} -Bu (for Q = HgCl, \underline{t} -Bu: \underline{c} -C₆H₁₁: \underline{n} -Bu = 1.0:0.011:0.0001; for Q = Bu₃Sn, \underline{t} -Bu: \underline{c} -C₆H₁₁: \underline{n} -Bu = 1.0:0.025:0.002).

Table 1 presents the results of the photostimulated reactions of a variety of mercurials with $PhC \equiv C-Q$ (Reaction 4) where Q = $PhSO_2$, I, SPh, $PhC \equiv CHg$ or Bu_3Sn . As in the case of

$$RHgC1 + PhC_{\Xi}C-Q \xrightarrow{350nm} > PhC_{\Xi}CR + QHgC1 \text{ or } QC1 + Hg^{\circ}$$
(4)

PhCH=CHQ or $Ph_2C=CHQ$,⁵ we find that the yields in general follow the order R = <u>t</u>-Bu > 2°-alkyl > 1°-alkyl. In addition to alkylmercury halides, the substitution reaction (Q = I) also occurs with (EtO)₂P(O)HgCl (Table 1), (PhS)₂Hg, (PhSO₂)₂Hg or (Me₃C)₂Hg. Use of (Me₂CHCO₂)₂Hg to supply R• in Scheme 1 by a Hunsdiecker-type process has been unsuccessful with PhC=CI although a good yield of Ph₂C=CHCHMe₂ is obtained from Ph₂C=CHI.

The relative reactivities of PhC=C-Q, PhCH=CHQ and Ph₂C=CHQ towards \underline{c} -C₆H₁₁• were determined by competitive reactions of \underline{c} -C₆H₁₁HgCl with an excess of mixtures of two substrates. The results of Table 2 indicate a surprisingly high reactivity for the substrates with Q = PhSO₂, particularly in the PhC=CSO₂Ph system. Since there is no evidence that the addition of R• to vinyl or acetylenic substrates is reversible, the data of Table 2 are believed to present the true reactivities of these substrates towards the addition of \underline{c} -C₆H₁₁•. For PhC=CQ the relative reactivities towards \underline{c} -C₆H₁₁• increase from Q = Bu₃Sn to I to PhSO₂. Competitive reactions with a deficiency of Hg(SPh)₂ are admittedly complicated by the reversibility of the addition of PhS•. However, again a reactivity order of PhC=CSO₂Ph (1.0) > PhC=CI (0.2) > PhC=CSnBu₃ (<0.01) is observed. Since the same reactivity order is found with both the nucleophilic \underline{c} -C₆H₁₁• and the electrophilic PhS•, the relative reactivities of the alkynes.

The measured reactivities of $Ph_2CH=CHQ$ towards PhS° (relative to $PhC \equiv CSO_2Ph = 1.0$) are $Q = PhSO_2$ (0.3) < I (0.8) < Bu_3Sn (4.5) < HgCl (6). The high reactivity of $PhC \equiv CSO_2Ph$ relative to $Ph_2C=CHSO_2Ph$ (or $PhCH=CHSO_2Ph$) and the low reactivity of $PhC \equiv CSnBu_3$ relative to $Ph_2C=CHSNBu_3$ (or $PhCH=CHSNBu_3$) observed with both $\underline{c}-C_6H_{11}^{\circ}$ and PhS° is puzzling. Perhaps the groups $Q = Bu_3Sn$ or HgX can stabilize the transition states leading to PhCH-CH(R)Q, but not to PhC=C(R)Q, by hyperconjugation or bridging, particularly when the attacking radical is electrophilic in nature.

The results indicate that the preferred group for free radical substitution by an addition-elimination mechanism depends on the nature of the center being attacked (sp or sp^2) and on the nature of the attacking radical with PhSO₂ being the preferred group in alkynes but often Bu₃Sn or HgCl in the alkenes. However, when stereospecificity is desired, the iodo substituent seems to be the preferred leaving group.⁶

 Q	R (equiv of RHgCl)	Conditions ^ª	% Yield of PhC≘CR ^b	
I	<u>t</u> -Bu (1.5)	Me ₂ SO, dark, 7 h	0	
Ι	<u>t</u> -Bu (1.5)	Me ₂ SO, SL, 7 h	100	
Ι	t-Bu (1.2)	Me_2SO , SL, 45 min	25	
Ι	t-Bu (1.2)	Me ₂ SO, SL, 45 min,		
		10 mol % (<u>t</u> -Bu) ₂ NO•	<5	
Ι	$C-C_{6}H_{11}$ (1.5)	Me ₂ SO, SL, 7 h	93	
Ι	n-Bu (1.5)	Me ₂ SO, SL, 7 h	48	
I	(EtO) ₂ PO (1.1)	Me ₂ SO, UV, 24 h	32	
PhS02	<u>i</u> -Pr (5)	PhH, UV, 24 h	44	
PhS0 ₂	<u>c</u> -C ₆ H ₁₁ (5)	PhH, UV, 24 h	67	
PhS02	<u>t</u> -Bu (5)	PhH, UV, 24 h	55	
PhS0 ₂	(EtO) ₂ PO (5)	PhH, UV, 24 h	30	
PhS	<u>i</u> -Pr (5)	PhH, UV, 24 h	37	
PhS	<u>i</u> -Pr (5)	Me ₂ SO, UV 24 h	25	
PhS	 i-Pr (0.2)	Me_2SO , UV 24 h	42	
PhS	$c-C_6H_{11}$ (0.2)	Me_2SO , UV, 24 h	46	
PhS	<u>t</u> -Bu (0.2)	$Me_{2}SO$, UV, 24 h	44	
PhC≘CHg	n-Bu (5)	$Me_{2}SO$, UV, 24 h	9 ^C	
PhC≘CHg	$c_{-}C_{6}H_{11}$ (5)	Me ₂ SO, UV, 24 h	26 ^{<u>C</u>}	
PhC₌CHg	t-Bu (5)	Me ₂ SO, UV, 24 h	34 [⊆]	
PhC≘CHg	(EtO) ₂ PO (5)	Me ₂ SO, UV, 24 h	61 ^{<u>C</u>}	
Bu ₃ Sn	<u>n</u> -Bu (5)	PhH, UV, 30 h	13	
Bu ₃ Sn	<u>c</u> -C ₆ H ₁₁ (5)	PhH, UV, 30 h	43	
Bu ₃ Sn	<u>t</u> -Bu (5)	PhH, UV, 30 h	61	

Table 1. Photostimulated Reaction of RHgCl with PhC=C-Q to Yield PhC=CR

 $\frac{a}{2}$ Reactions performed on a 0.1 mmol scale in 5 mL of solvent at 35-40 °C with irradiation from a 275 W sunlamp (SL) or at 350 nm in a Rayonet Reactor (UV). $\frac{b}{2}$ Yield determined by GLPC. $\frac{c}{2}$ Based on a stoichiometry of 2 mol of PhC=CR/mol of (PhC=C)₂Hg.

Q	PhC≘CQ	(<u>E</u>)-PhCH=CHQ	Ph ₂ C=CHQ	
PhSO		3,3	6 4	
I	3.8	<u>0.7</u>	1.0	
<u>n</u> -Bu ₃ Sn PhC≡CHg	<u>0.2</u> <u>0.2</u> ^b	<u>0.7</u>	0.8	
C1Hg		<u>1.5</u>	1.9	

Table 2. Relative Reactivities towards $\underline{c}-C_6H_{11}-\underline{a}$

^{<u>a</u>} At 35-40 °C in Me₂SO or PhH for Q = <u>m</u>-Bu₃Sn by a competitive reaction photostimulated by 350 nm irradiation in a Rayonet Reactor. Underlined reactivities were determined in direct competition with Ph₂C=CHI. Typical procedures involved 0.1 mmol of C₆H₁₁HgCl and 2.0 mmoles of a 1:1 mixture of two substrates in 10 mL of Me₂SO or PhH. ^{<u>b</u>} Molar reactivity of (PhC≡C)₂Hg.

References:

- Electron Transfer Processes. 41. This work was supported by grant CHE-841540 from the National Science Foundation.
- (2) De Lucchi, O.; Licini, G.; Pasquato, L.; Senta, M. <u>J. Chem. Soc., Chem. Commun.</u> 1985, 1597.
- (3) Eisch, J. J.; Behrooz, M.; Galle, J. E. Tetrahedron Lett. 1984, 25, 4851.
- (4) Miyamoto, N.; Fukuoka, D.; Utimoto, K.; Nozaki, H. Bull. Chem. Soc. Jpn. 1974, 47, 503.
- (5) Russell, G. A.; Tashtoush, H.; Ngoviwatchai, P. J. Am. Chem. Soc. 1984, 106, 4622.
- (6) Russell, G. A.; Ngoviwatchai, P. <u>Tetrahedron Lett.</u> 1985, <u>26</u>, 4975; see also Saihi, M. L.; Pereyre, M. <u>Bull. Chem. Soc. Fr.</u> 1977, 1251; Baldwin, J. E.; Kelly, D. R.; Ziegler, C. B. <u>J. Chem. Soc., Chem. Commun.</u> 1984, 133.
- Substitution by addition-elimination in a variety of allylic, propargylic, allenic and alkenyloxy systems is also well recognized. For some recent examples of S_H2' reactions see: Ueno, Y.; Chino, K.; Okawara, M. <u>Tetrahedron Lett.</u> 1982, 23, 2575; Baldwin, J. E.; Adlington, R. M.; Basak, A. <u>J. Chem. Soc., Chem. Commun.</u> 1984, 1284; Russell, G. A.; Herold, L. L. <u>J. Org. Chem.</u> 1985, <u>50</u>, 1037; Keck, G. E.; Byers, J. H. <u>J. Org. Chem.</u> 1985, <u>50</u>, 5042.

(Received in USA 11 February 1986)