FREE RADICAL SUBSTITUTION REACTIONS OF

PHENYLACETYLENE DERIVATIVES BY AN ADDITION-ELIMINATION MECHANISM¹

GLEN A. RUSSELL* and PREECHA NGOVIWATCHAI

Department of Chemistry Iowa State University Ames, Iowa 50011

Summary: Phenylacetylenes (PhCECQ with Q = PhSO₂, I, SPh, Bu₃Sn PhCECHg) **undergo free radical chain substitution reactions with RHgCl, R2Hg, (Et0)2P(O)HgCl, (PhS)2Hg or (PhS02)2Hg. The relative reactivities of PhCXQ towards c-C6HII* are Q = PhS02 (65) > I (19) > Bu3Sn (1.0).**

Several recent reports of free radical reactions of PhC=CSO₂Ph have appeared.^{2,3} These complement an earlier report by Nozaki et al. that PhC=CSO₂Me or PhC=CSOMe react with alkylboranes by a radical process to form $PhC_εCR.⁴$ We have demonstrated that a variety of substituted alkenes including PhCH=CHQ and Ph₂C=CHQ with Q = HqCl, Bu₂Sn, SO₂Ph, SOPh, I or **SPh react with alkylmercury halides by a free radical chain process to form PhCH=CHR or** Ph₂C=CHR.^{5,6} It appears that the mechanism suggested for these vinyl systems (Scheme 1) is **also applicable to acetylenic systems.7**

Scheme 1

In specific cases the combination of Reactions 1 and 2 can lead to stereospecific substitution with retention of configuration. 6 Evidence for Reactions 3-3b occurring in a concerted one-step process is furnished by the observations that in the reactions of PhCH=CHS02Ph, PhCH=CHHgCl or PhCH-CHSnBu3 with excesses of 1:l **mixtures of two alkylmercury chlorides, the relative reactivities of the alkylmercury chlorides as determined from product** ratios are t-Bu > c-C₆H₁₁ > n-Bu (for Q = HgCl, t-Bu:c-C₆H₁₁:n-Bu = 1.0:0.011:0.0001; for Q = **Bu3Sn, J-Bu:c-C6HII:n-Bu = 1.0:0.025:0.002).**

Table 1 presents the results of the photostimulated reactions of a variety of mercurials with PhC=C-Q (Reaction 4) where Q = PhS0₂, I, SPh, PhC=CHg or Bu₃Sn. As in the case of

RHgCl + PhC₌C-Q
$$
\xrightarrow{350\text{nm}}
$$
 PhC₌CR + QHgCl or QCl + Hg^o (4)

PhCH=CHQ or Ph₂C=CHQ,⁵ we find that the yields in general follow the order R = t -Bu > 2° -alkyl > 1^o-alkyl. In addition to alkylmercury halides, the substitution reaction $(Q = I)$ also occurs with (Et0)₂P(O)HgCl (Table 1), (PhS)₂Hg, (PhSO₂)₂Hg or (Me₃C)₂Hg. Use of (Me₂CHCO₂)₂Hg to supply R. in Scheme 1 by a Hunsdiecker-type process has been unsuccessful with PhC=CI although a good yield of Ph₂C=CHCHMe₂ is obtained from Ph₂C=CHI.

The relative reactivities of PhC=C-Q, PhCH=CHQ and Ph₂C=CHQ towards c -C₆H₁₁ • were determined by competitive reactions of c-C₆H₁₁HgCl with an excess of mixtures of two **substrates. The results of Table 2 indicate a surprisingly high reactivity for the** substrates with $Q = PhSO₂$, particularly in the PhC \in CSO₂Ph system. Since there is no evidence **that the addition of R* to vinyl or acetylenic substrates is reversible, the data of Table 2 are believed to present the true reactivities of these substrates towards the addition of** \underline{c} -C $_6$ H $_1$ 1•. For PhC \in CQ the relative reactivities towards \underline{c} -C $_6$ H $_1$ 1• increase from Q = Bu $_3$ Sn to I to PhSO₂. Competitive reactions with a deficiency of Hg(SPh)₂ are admittedly complicated by the reversibility of the addition of PhS*. However, again a reactivity order of PhC=CSO₂Ph (1.0) > PhC=CI (0.2) > PhC=CSnBu₃ (<0.01) is observed. Since the same reactivity order is found with both the nucleophilic $c - C_6H_{11}$ ^{*} and the electrophilic PhS^{*}, the relative **reactivities apparently reflect the intrinsic reactivities of the alkynes.**

The measured reactivities of $Ph_2CH=CHQ$ towards PhS* (relative to $PhC=CSO_2Ph = 1.0$) are $Q = PhSO₂ (0.3) < I (0.8) < Bu₃$ Sn (4.5) < HgCl (6). The high reactivity of PhC=CSO₂Ph relative to Ph₂C=CHS0₂Ph (or PhCH=CHS0₂Ph) and the low reactivity of PhC=CSnBu₃ relative to Ph₂C=CHSNBu₃ (or PhCH=CHSnBu₃) observed with both c-C₆H₁₁ and PhS· is puzzling. Perhaps the groups Q = Bu₃Sn or HgX can stabilize the transition states leading to PhCH-CH(R)Q, but not **to PhC=C(R)Q, by hyperconjugation or bridging, particularly when the attacking radical is electrophilic in nature.**

The results indicate that the preferred group for free radical substitution by an addition-elimination mechanism depends on the nature of the center being attacked (sp or sp²) and on the nature of the attacking radical with PhSO₂ being the preferred group in alkynes but often Bu₃Sn or HgCl in the alkenes. However, when stereospecificity is desired, the iodo **substituent seems to be the preferred leaving group. 6**

Table 1. Photostimulated Reaction of RHgCl with PhC₂C-Q to Yield PhC₂CR

2 Reactions performed on a 0.1 mmol I **scale in 5 mL of solvent at 35-40 "C with irradiation from a 275 W sunlamp (SL) or at 350 nm in a Rayonet Reactor (UV). b Yield** determined by GLPC. ^C Based on a stoichiometry of 2 mol of PhC=CR/mol of (PhC=C)₂Hg.

Table 2. Relative Reactivities towards c-C₆H₁₁^{-</sub>^a}

a At 35-40 °C in Me₂SO or PhH for Q = n-Bu₃Sn by a competitive reaction photostimulated **by 350** nm irradiation **in a Rayonet Reactor. Underlined reactivities were determined in** direct competition with Ph₂C=CHI. Typical procedures involved 0.1 mmol of C₆H₁₁HgCl and 2.0 **mmoles of a 1:1 mixture of two substrates in 10 mL of Me₂SO or PhH. ^b Molar reactivity of (PhCEC)2Hg.**

References:

- (1) **Electron Transfer Processes. 41. This work was supported by grant CHE-841540 from the National Science Foundation.**
- (2) **De Lucchi, 0.; Licini, G.; Pasquato, L.; Senta, M. J. Chem. Sot., Chem. Commun.** 1985, 1597.
- **(3) Eisch, J. J.; Behrooz, M.; Galle, J. E. Tetrahedron Lett. 1984, 3, 4851.**
- **(4)** Miyamoto, N.; Fukuoka, D.; Utimoto, K.; Nozaki, H. Bull. Chem. Soc. Jpn. 1974, 47, 503.
- **(5) Russell, G. A.; Tashtoush, H.; Ngoviwatchai, P. J. Am. Chem. Sot. 1984, 106, 4622.**
- **(6)** Russell, G. A.; Ngoviwatchai, P. <u>Tetrahedron Lett.</u> 1985, <u>26</u>, 4975; see also Saihi, M.
L.; Pereyre, M. <u>Bull. Chem. Soc. Fr.</u> 1977, 1251; Baldwin, J. E.; Kelly, D. R.; Ziegler, **C:'B. J. Chem. Sot., Chem. Commun.-i984, 133.**
- **(7) Substitution by addition-elimination in a variety of allylic, propargylic, allenic and** alkenyloxy systems is also well recognized. For some recent examples of S_HZ' reactions **Ueno, Y.; Chino, K.; see: Okawara, M. Tetrahedron Lett.** 1982, 2J, **2575; Baldwin, J. E.; Adlington, R. M.; Basak, A. J. Chem. Sot., Chem. Commun.** 1984, **1284; Russell, G. A.; Herold, L. L. J. Org. Chem.** 1985, 50, **1037; Keck, G. E.; Byers, J. H. J. Org. Chem. 1985, 50, 5442.**

(Received in USA 11 February 1986)